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Summary: Urban areas are among those most endangered with the potential global climate changes. The studies 

concerning the impact of global changes on local climate of cities are of a high significance for the urban inhabitants' 

health and wellbeing. This paper is the final report of a project (Urban climate in Central European cities and global 
climate change) with the aim to raise the public awareness on those issues in five Central European cities: Szeged 

(Hungary), Brno (Czech Republic), Bratislava (Slovakia), Kraków (Poland) and Vienna (Austria). Within the 

project, complex data concerning local geomorphological features, land use and long-term climatological data were 

used to perform the climate modelling analyses using the model MUKLIMO_3 provided by the German Weather 

Service (DWD). 
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1. INTRODUCTION 

Global climate changes affect the environment in global, regional and local scales. 

Urban climate is a local scale phenomenon but it has direct and significant impact on 54% of 

the total global population living in cities (data of 2014). The global urban population is 

expected to grow further, approximately 1.84% per year between 2015 and 2020, 1.63% per 

year between 2020 and 2025, and 1.44% per year between 2025 and 2030 (Urban population 

growth 2015). Parallel, the global mean surface temperature change for the period 2016–

2035 relative to 1986–2005 will likely be in the range of 0.3°C to 0.7°C, and relative to the 

average from year 1850 to 1900, global surface temperature change by the end of the 21st 

century is projected to likely exceed 1.5°C (IPCC 2013). Urban areas are among those most 

endangered with the potential global climate changes. The heat load in cities is supposed to 

get intensified as global temperature increase will be superimposed on air temperature 

modifications characteristic for urban areas, e.g. the Urban Heat Island (UHI) effect. Those 

phenomena might have far-reaching health effects (e.g. Baccini et al. 2008). Therefore, the 

                                                           
* This paper is the edited version of the final report of the Urban climate in Central European cities and global climate change project, submitted in 2015. 
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studies concerning the impact of global changes on local climate of cities are of a high 

significance for the urban inhabitants' health and wellbeing. In order to plan and undertake 

the mitigation actions in particular cities, it is necessary to recognize the possible range of 

heat load increase, in terms of both its magnitude and spatial extent. 

The present paper shows the prediction of urban heat load increase by 2100 in five 

Central European cities: Kraków (Poland), Bratislava (Slovakia), Brno (Czech Republic), 

Szeged (Hungary) and Vienna (Austria). The heat load is defined as the mean annual number 

of the summer days, i.e. days with maximum temperature ≥ 25°C. Numerous previous 

studies, completed for the cities mentioned, allowed to achieve the recognition of their 

present urban climate features (e.g. Unger et al. 2011, Unger et al. 2014, Dobrovolný et al. 

2012, Dobrovolný 2013, Lapin and Melo 2011, Auer et al. 1989, Böhm 1998, Walawender 

et al. 2014, Bokwa 2010a, 2010b, Bokwa et al. 2015). The cities are located in large river 

valleys and the diversified relief is an important local climate factor (except Szeged, located 

in flat area), even though the cities are not placed in the mountains. The historical urban 

infrastructure of Kraków, Bratislava, Brno and Szeged has been significantly modified first 

due to the destruction during the Second World War and then due to spatial development 

during the communistic times. For example, unlike in most cities located in USA or West 

Europe, areas with high buildings can be found in the suburbs, while city centres comprise 

of 2-3-storey historical buildings. Therefore, urban climate of the cities included in the study 

is an outcome of complex interactions between land use/land cover and land forms. The 

modelling approach used is designed to evaluate possible changes in urban heat load under 

future climate conditions, taking under consideration the role of the relief in controlling the 

urban climate which is a unique feature comparing to other similar tools available. The long-

perspective aim of the study is to compare the values and spatial extent of the expected heat 

load increase among the cities included in the study, find the factors controlling those patterns 

and provide the city planners with information which can be implemented in the future urban 

development plans. 

2. THE STUDY AREAS AND METHODS 

In the present study, the analyses were performed for five cities, located in Central 

Europe. The basic features of the cities are described in Table 1. 

Table 1  Basic data concerning the cities included in the study 

City (country) Area (km2) Altitude range (m a.s.l.) Population (year) 

Kraków (Poland) 327 145-459 761,870 (2014) 

Bratislava (Slovakia) 368 126-450 419,670 (2014) 

Brno (Czech Republic) 230 200-525 377,400 (2015) 
Szeged (Hungary) 281 46-143 162,500 (2015) 

Vienna (Austria) 414 141-581 1,812,600 (2015) 

 

Kraków is a city in southern Poland, on the river Vistula. The city is located in a 

concave landform, i.e. in the river valley passing from west to east. The historical city centre 

is placed on the bottom of the river Vistula valley (at about 200 m a.s.l.), on a limestone 

tectonic horst (Wawel Hill), emerging from the river valley. To the north of the river Vistula 

and the city centre is the Kraków-Częstochowa Upland, built of limestone and marls, and its 

parts located close to Kraków reach up to 300 m a.s.l. The southern borders of the city run 
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partially in the Carpathian Foothills, built of Flysch rocks, with an elevation up to 370 m a.s.l. 

in the area neighbouring Kraków. The river Vistula valley is narrow in the western part of 

Kraków (about 1 km) and widens to about 10 km in the eastern part. In the western part of 

the valley, there are several limestone tectonic horsts, reaching about 350 m a.s.l., so the city 

area is not surrounded by hills only from the east. The urbanized areas can be found in the 

river valley with its terraces and in convex landforms to the south and north of the city centre. 

Height differences between the valley floor and the hilltops next to the city borders are about 

100 m, and the built-up areas do not reach those hilltops. Within the city borders, built-up 

areas cover 43.0% of the area, while agricultural and semi-natural areas amount to 41.3%, 

and the remaining (green and water) areas cover 15.7%. In the valley floor, many different 

land use types can be distinguished, while in the convex landforms south and north of the 

valley, only a few land use types can be found (Bokwa et al. 2015). 

Bratislava is located in south-western Slovakia and it occupies both banks of the River 

Danube and the left bank of the River Morava. It is the country's largest city, situated only 

60 km from the Austrian capital Vienna. Bordering Austria and Hungary, it is the only 

national capital that borders two independent countries (Swire 2006). The city has a total area 

of 368 km2. The historic city center is located between the Danube and south-eastern slopes 

of the Carpathian mountain range – Malé Karpaty. Several city districts or boroughs are not 

directly connected to the historical center, but are located more separately and connected to 

Bratislava through narrow urban regions. The largest and most distinct borough of Bratislava 

situated on the right bank of Danube is Petržalka. Significant feature in the region of 

Bratislava is the mentioned Malé Karpaty mountain range in the northern and western parts 

of the city. Several city boroughs are found on both sides of the mountain ridge and are 

situated at foothill or directly on its slopes. The most of city districts are however located in 

the lowlands, to the east and southeast at Podunajská nížina lowland and to the northwest at 

Záhorská nížina lowland. The city's lowest point is at the Danube at 126 m a.s.l., and the 

highest point is Devínska Kobyla at 514 m. Complex orographic conditions in the Bratislava 

region generate a distinct and variable nature of the climate in the city and its surroundings. 

Especially the Malé Karpaty mountain range is affecting overall air circulation and thereby 

affecting most of climate characteristics in the city. 

Brno is situated in the south-eastern part of the Czech Republic and it is the second-

largest city in the country. Brno area is characterized by a basin position with complex terrain. 

Altitudes range from 190 m to 479 m, with the higher elevations lying largely in the western 

and northern parts of the region. Lower and flatter terrain is typical of the southern and eastern 

parts of the study area. There is a large water reservoir (area approximately 2.6 km2) located 

on the north-west border of the built-up part. The study area lies in one of the warmest and 

the driest regions in the Czech Republic. Mean annual temperature stands at 9.4°C, while 

mean annual precipitation is around 500 mm (1961–2000 reference period). 

Szeged is located in the Pannonian Plain in Central Europe. According to the climate 

classification system developed by Köppen, it belongs to temperate warm climate with a 

rather uniform annual distribution of precipitation (Kottek et al. 2006). The urbanized area 

covers only about 40 km2 of the city. The Tisza River is the axis of the town and the city has 

a regular avenue-boulevard structure. It is characterized by densely built up center, blocks of 

flats in the northern part, large area of family houses and warehouses mostly in western part 

(Unger 2004). In the study area, several database and input material is available from earlier 

studies, e.g. parameters used in the LCZ system and a set of other data (Rapid eye satellite 

images, CORINE land cover, road database, etc.) (Lelovics et al. 2014). 
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Kraków, grid size: 389×275×39 

 
Bratislava, grid size: 160×160×39 

 
Brno, grid size: 250×250×39 

 
Szeged, grid size: 213×181×25 

 
Vienna, grid size: 316×247×39 

Fig. 1  Land use/land cover for the cities studied and their surroundings,  

presented with the LCZ method 

Vienna is the capital city of Austria and the largest city used in this study. It is located 

at the easternmost extension of the Alps in a transition zone to the Pannonian Plain with the 

Danube River passing through the city. The City of Vienna covers an area of 41,487 ha from 

which 35.6% are buildings, 45.5% are green areas, 4.6% is water and 14.3% are traffic 

surfaces. The highest elevation is the Hermannskogel in Wienerwald (543 m) and the lowest 

point (151 m) is in the Lobau, east of the city center (Stadt Wien 2015). The urbanized area 

is characterized by the historical center surrounded by a green belt, dense built-up areas in 

the inner districts and low-density residential areas on the hillsides in the western part of the 
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city and in the flat terrain in the south and east direction. Most of the industrial areas are 

located in the eastern and southern part of the city.  

In each of the cities studied, the land use pattern is different. In order to obtain 

comparable data on land use/land cover for all the cities, the method of Local Climate Zones 

was used (see section 4.2). The results are presented in Fig. 1. 

Table 2 presents the share of particular LCZ classes in each city and its surroundings 

(i.e. in the domains shown in Fig. 1). It can be seen that some LCZ classes cannot be found 

or their share is very little in all cities: 1 (compact high-rise), 4 (open high-rise), 7 

(lightweight low-rise), B (scattered trees), G (water). There is no one single LCZ that would 

have a dominating share in all cities; on the contrary, the land use/land cover structure is 

different for each city. Additionally, Fig. 1 shows that the spatial pattern of particular LCZ is 

different in each city, i.e. there are no regular zones surrounding the urban core area but there 

is a mosaic of various LCZ types. 

Table 2  Share (%) of particular LCZ classes in the total area of the domain taken into analyses for 

each city studied 

City LCZ classes 

1 2 3 4 5 6 7 8 9 10 A B C D E F G 

Kraków - 0.6 0.2 - 6.5 2.9 0.0 1.8 14.4 0.6 8.3 8.1 - 50.1 0.3 5.2 1.0 

Bratislava - 0.7 2.8 - 13.0 6.2 - 5.2 15.4 24.1 4.7 - 20.9 1.4 2.9 2.6 - 

Brno - 0.6 7.4 - 4.3 5.0 1.4 3.3 6.8 32.6 20.7 - 6.7 3.2 7.6 0.4 - 
Szeged - 0.7 0.4 - 3.6 5.1 - 4.8 16.4 6.4 8.5 - 23.5 - 27.1 3.4 - 

Vienna - 2.1 2.6 - 8.8 8.5 0.2 10.6 11.4 0.6 21.9 7.2 0.7 12.7 0.1 9.9 2.6 

3. METEOROLOGICAL DATA 

Meteorological data were used in the study for several purposes. In each city, daily 

data from a rural and from an urban station were used, for a period of 30 years (1971–2000 

and 1981–2010), concerning air temperature, humidity and wind speed and direction. The 

stations are listed in Table 3. 

Table 3  Meteorological stations used in the study 

City Station name Land use Coordinates Altitude (m a.s.l.) 

Bratislava Bratislava, airport Rural 48°10'N, 17°12'E 128 

 Bratislava, Mlynská dolina Urban 48°09'N, 17°04'E 180 
Brno Brno, Tuřany airport Rural  49°09'N,16°41'E 241 

 Brno, Mendel Sqr.  Urban  49°11'N, 16°36'E 206 

Kraków Balice airport Rural  50°04'N, 19°47'E 241 

 Botanical Garden Urban  50°03'N, 19°57'E 206 

Szeged HMS meteorological station Rural 46°15'N, 20°05'E 79 

 HMS climate station Urban 46°15'N, 20°08'E 81 
Vienna Groß Enzersdorf Rural 48°11'N, 16°33'E 153 

 Innere Stadt Urban 48°11'N, 16°22'E 177 

 

The usage of meteorological data in cuboid method (section 4.1) was connected first 

with establishment of the threshold values; daily data from the 30-year period were used to 

obtain for each city, for the rural station, the lowest (cmin) and the highest (cmax) values of 

mean daily air temperature (T), relative humidity (rh) and wind speed (v), at which, at the 

urban station, the maximum air temperature was ≥ 25°C. The combinations of those threshold 
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values made the corners of a “cuboid” (Fig. 2), constructed separately for each city. Then the 

30-year data were used to obtain the spatial pattern of mean annual number of days with tmax 

≥ 25C for each city, for the areas presented in Fig. 1, with the usage of MUKLIMO_3 and 

the cuboid method. The 30-year data were also used as a reference series for the comparison 

with modelled data, for each city. 

4. METHODS 

4.1. MUKLIMO 

MUKLIMO_3 (in German: 3D Mikroskaliges Urbanes KLIma MOdell) is a non-

hydrostatic micro-scale model with z-coordinates, which solves the Reynolds-averaged 

Navier–Stokes equations to simulate atmospheric flow fields in presence of buildings 

(Sievers and Zdunkowski 1985, Sievers 1990, 1995). The thermo-dynamical version of the 

model includes prognostic equations for atmospheric temperature and humidity, the 

parameterization of unresolved buildings, short-wave and long-wave radiation, balanced heat 

and moisture budgets in the soil (Sievers et al. 1983) and a vegetation model based on Siebert 

et al. (1992). The numerical approach for the calculation of short-wave irradiances at the 

ground, the walls and the roof of buildings in an environment with unresolved built-up is 

described by Sievers and Früh (2012). The flow between buildings is parameterized through 

a porous media approach for unresolved buildings (Gross 1989). The model uses high-

resolution orography and land use distribution data. For each land use class, a set of 

parameters is defined to describe land use properties and urban structures: fraction of built 

area (γb), mean building height (hb), wall area index (wb), fraction of pavement of the non-

built area (v), fraction of tree cover (σt) and fraction of low vegetation of the remaining 

surface (σc), height (hc) (Table 4) and leaf area index (LAIc) of the canopy layer as well as 

mean height (ht) and leaf area index (LAIt) of the trees with separated values for the tree trunk 

and the tree crown area. The model does not include cloud processes, precipitation, horizontal 

runoff or anthropogenic heat. 

 

Fig. 2  The concept of the cuboid method (Žuvela-Aloise et al. 2014, Früh et al. 2011) 
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Table 4  Parameters for land cover properties in MUKLIMO_3 model: fraction of built area (γb), 

mean building height (hb), wall area index (wb), fraction of pavement (v), fraction of tree cover (σt), 

fraction of low vegetation (σc), tree height (ht) and height of the low vegetation (hc). Fractions γb and 

σt are relative to the total grid cell area. Fraction v is relative to the area without buildings and trees 

and σc is relative to the remaining surface 

Land use class 
γb (%) hb (m) wb 

v  

(%) 
σt (%) σc (%) 

ht  

(m) 
hc (m) 

1 Compact high-rise          

2 Compact midrise 0.40 15.00 3.42 0.60 0.00 0.80 0 0.30 

3 Compact low-rise 0.40 8.40 2.40 0.40 0.00 0.80 0 0.30 
4 Open high-rise         

5 Open midrise 0.20 18.60 4.40 0.60 0.00 0.80 0 0.30 

6 Open low-rise 0.20 6.50 2.10 0.40 0.00 0.70 0 0.30 
7 Lightweight low-rise 0.75 3.00 1.80 0.20 0.00 0.30 0 0.30 

8 Large low-rise 0.30 7.00 2.00 0.80 0.00 0.80 0 0.30 
9 Sparsely built 0.10 6.00 2.10 0.20 0.00 0.80 0 0.30 

10 Heavy industry 0.30 7.00 2.00 0.80 0.00 0.80 0 0.30 

A Dense trees 0.00 0.00 0.00 0.00 0.80 0.90 17 0.50 
B Scattered trees 0.00 0.00 0.00 0.00 0.40 0.90 9 0.50 

C Bush. scrub 0.00 0.00 0.00 0.00 0.40 0.90 1.5 0.50 

D Low plants 0.00 0.00 0.00 0.00 0.00 1.00 0 0.50 
E Bare rock or paved 0.00 0.00 0.00 0.95 0.00 0.01 0 0.30 

F Bare soil or sand 0.00 0.00 0.00 0.00 0.00 0.01 0 0.30 

G Water 0.00 0.00 0.00 -1.00 0.00 0.01 0 0.30 

  

In order to calculate climatic indices, such as the mean annual number of summer 

days, the dynamical modelling approach is combined with the so-called “cuboid method” 

(Früh et al. 2011, Žuvela-Aloise et al. 2014). The cuboid method refers to a tri-linear 

interpolation of meteorological fields derived by single-day simulations from an urban 

climate model. The simulations are performed for a set of idealized weather patterns for 

potential situations where a heat load exceedance in the urban centre could occur. Eight 

simulations with duration of 24 hours for two prevailing wind directions are calculated 

representing the cuboid corners (Fig. 2). Calculation of climatic indices for 30-year climatic 

periods is based on maximum temperature fields from the 8 single-day simulations using 

daily time series of T, rh and v, including hourly wind direction from a reference station as 

input. 

4.2. Local Climate Zones 

The Local Climate Zone (LCZ) classification (Stewart and Oke 2012) is an 

outstanding concept for the climate-related classification of urban areas in global scale. 

Although it was originally designed for meta-data communication in observational urban heat 

island studies, its possible applications are numerous. One of the most important ones is the 

possibility to use these zones for the input of different climate or weather models in order to 

better represent urban areas. The use of this concept in these models is advantageous because 

this classification is based on the thermal characteristics of the urban areas, and it is connected 

to the most obvious alteration of the climate in urban areas, the urban heat island (Stewart 

2011). Fig. 3 contains the LCZ classes and definitions.  
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Fig. 3  Local Climate Zones classes and definitions (Stewart and Oke 2012) 

The LCZ system was initially designed for the classification of urban measurement 

sites (Stewart and Oke 2012), but meanwhile several methods for LCZ mapping have been 

proposed (Bechtel and Daneke 2012, Lelovics et al. 2014, Geletič and Lehnert 2016, Bechtel 
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et al. 2015). Our study concentrates on 5 different cities and for each city different databases 

and surface data are available. For this reason we had to choose a simple method for mapping, 

moreover the same method had to be used in all of the cities. Therefore, the same input data 

needed had to be available in all cities. The only suitable method in this situation is the 

Bechtel-method. It applies free-access satellite images, free software and it can be handled 

without expert remote sensing knowledge. The methodology uses two software packages: 

Google Earth and SAGA-GIS. As an input data, it applies globally available Landsat satellite 

images. The workflow consist two main steps (Bechtel et al. 2015).  

First, typical LCZ areas (training areas) have to be located in the study area; this part 

is carried out in Google Earth. The training areas are stored in a kml file containing a set of 

polygons for the different LCZ types and also a rectangle defining the border of the examined 

area. This kml file is used for the second part of the process which is carried out in SAGA-

GIS. Secondly, in SAGA-GIS the Landsat images and the vector file (containing the training 

areas) have to be preprocessed. The Landsat scene is cut with the border of study area in 

order to decrease the computation time, and the imagery is resampled to 100 m from the 

original 30 m to get a representation of the spectral signal of local scale urban structures 

rather than smaller objects. Finally, the classification is conducted with the built in random 

forest classifier based on the Landsat images and the training area polygons. The classifier 

calculates the most likely LCZ type and the probabilities for all LCZ classes for each pixel. 

For the study areas included in the present paper, we used all spectral bands of 19 

Landsat 7 and 8 images (Bratislava: 3 images, Brno: 4, Kraków: 4, Szeged: 5, Vienna: 3). 

The use of multiple images from different seasons is advantageous, as with more spectral 

information the classification gives better results. The scenes were obtained from USGS 

(earthexplorer.usgs.gov). The criterion of the selection of these images was to ensure the 

absence of clouds. The LCZ classification outcome for particular cities is shown in Fig. 1. 

4.3. EURO-CORDEX 

Climate models provide key information on the impacts of 21st century climate change 

but are limited in their capacity to represent the relatively small scales needed for decision 

making on adaptation. Large collaborative research projects such as EURO-CORDEX (Jacob 

et al. 2013) have generated climate change scenarios via Regional Climate Models (RCMs). 

EURO-CORDEX simulations use the new Representative Concentration Pathways (RCPs) 

defined in the Fifth Assessment Report of the IPCC (Moss et al. 2010, IPCC 2013). RCPs do 

not identify socioeconomic scenarios; they express the change in radiative forcings, 

introduced by altered land use patterns at the end of the twenty-first century relative to pre-

industrial conditions (Table 5). For instance, the EURO-CORDEX simulations consider the 

RCPs scenarios corresponding to stabilization of radiative forcing after the 21st century at 4.5 

Wm-2 (RCP4.5) (Smith and Wigley 2006, Clarke et al. 2007, Wise et al. 2009), rising 

radiative forcing crossing 8.5 Wm-2 at the end of 21st century (RCP8.5) (Riahi et al. 2007), 

and peaking radiative forcing within the 21st century at 3.0 Wm-2 and declining afterwards 

(RCP2.6) (van Vuuren et al. 2007). 

The EURO-CORDEX simulations not only consider the new RCP scenarios, they 

increase the spatial resolution based on multiple dynamical and empirical-statistical 

downscaling. The members of the ensemble are forced by multiple global climate models 

from the Coupled Model Intercomparison Project (CMIP5) and the simulations focus on grid-

sizes of about 12 km (0.11°, EUR–11) and 50 km (0.44°, EUR–44) for the complete European 

model domain. 
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Table 5  Characteristics of the new Representative Concentration Pathways (RCPs) 

Name 
Radiative 

forcing 
CO2 eq. 

(ppm) 

Temp. 

anomaly 

(°C) 

Pathway 
SRES 

temp. eq. 
Number of 

experiments 

RCP8.5 
8.5 Wm-2 

in 2100 
1370 4.9 Rising SRES A1FI 7 

RCP4.5 
4.5 Wm-2 
past 2100 

650 2.4 

Stabilization 

without 

overshoot 

SRES B1 7 

RCP2.6 
2.6 Wm-2 

by 2100 
490 1.5 

Peak and 

decline 
None 1 

 

For this study, five different GCMs and three different RCMs have been used for the 

establishment of one simulation for RCP2.6 and seven simulations for RCP4.5 and RCP8.5 

for the EUR-11 domain (Table 6). All changes in output variables (mean temperature, relative 

humidity, wind speed and direction) have been analysed for the city areas using daily data 

for three time periods: 1971–2000, 2021–2050 and 2071–2100. 

Table 6  GCM-RCM model chains used to generate the different climate change projections used in 

this study 

Model 

RCP2.6 RCP4.5 RCP8.5 

Near-surface temperature [K]  

Near-surface relative humidity [%] 

Eastward Near-Surface Wind [ms-1] 

Northward Near-Surface Wind [ms-1] 

EUR-11_CNRM-CERFACS-CNRM-CM5_*_SMHI-RCA4    
EUR-11_ICHEC-EC-EARTH_*_SMHI-RCA4    

EUR-11_ICHEC-EC-EARTH_*_KNMI-RACMO22E    

EUR-11_ICHEC-EC-EARTH_*_DMI-HIRHAM5    

EUR-11_IPSL-IPSL-CM5A-MR_*_SMHI-RCA4    

EUR-11_MPI-M-MPI-ESM-LR_*_SMHI-RCA4    

EUR-11_MOHC-HadGEM2-ES_*_SMHI-RCA4    

 

The outputs of the climate models do not offer perfect results as they describe complex 

processes and interactions. We can observe systematic errors in the outputs. To minimize this 

error we should use error correction processes. There are abundant of known processes, in 

this study we used a bias correction method. 

The applied correction method is based on that we can completely describe the 

statistical properties of given datasets with their distribution and probability functions. So we 

can say that two data series are the same if their distribution and probability functions are the 

same (Formayer and Haas 2009). Thus if we want to correct a dataset based on its statistical 

properties we have to achieve that the distribution function will be the same of the 

measurements. Therefore to apply this method we should have dataset from measurements 

for a given time period. For this common period we suit the distribution functions of the 

measurement and the model with correction factors and we assume that the deviation will be 

permanent. In case of temperature the correction factors are the deviations of the percentiles. 

In this study we used the 1971–2000 time period as reference period. We calculated 

the 1% percentiles and their deviation for the datasets of the measurement and the model 

simulations. We corrected the temperature datasets for the 2021–2050 and 2071–2100 

periods based on the deviation of the reference period. In case of the relative humidity we 

took into consideration the corrected temperature data. The other correction that we made is 
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the correction of the temperature gradient in height. We surveyed the altitude for each city 

and for each grid points which are the nearest to the city in the model outputs. We calculated 

the deviation and took into account the decrease of the temperature in height applying the 

0.65°C / 100 m value. 

4.4. Estimation of the change in heat load 

For the present study, the heat load is expressed in the mean annual number of days 

with maximum air temperature ≥ 25C, i.e. summer days. The change in the heat load due to 

predicted climate changes is then defined as the difference in the mean annual number of 

summer days between a 30-year period representing the present conditions, 1971–2000, and 

two periods representing future conditions: 2021–2050 and 2071–2100. Therefore, first the 

spatial pattern on mean annual number of summer days, for each city and period considered, 

was obtained with the usage of MUKLIMO_3 and cuboid method. For each of the two future 

periods (2021–2050 and 2071–2100), the calculations were made separately for each climate 

scenario (i.e. RCP2.6, RCP4.5 and RCP8.5). For RCP2.6, the results obtained with one model 

were used, while for RCP4.5 and RCP8.5, mean values from seven models were used (see 

Table 6). The comparative analysis of the patterns allows to define areas in particular cities 

which are and/or are supposed to be the “hot spots” and “cold spots”, and which might 

experience the largest and the smallest changes in the heat load in the future. The changes of 

the heat load can be also calculated 

separately for areas with particular LCZ type 

in order to show whether all kinds of land 

use/land cover will react to the climatic 

changes in a similar way. For each city and 

period, mean, maximum and minimum 

number of summer days for the whole 

domain considered was calculated. The 

mean value is representative for the whole 

area, while maximum and minimum values 

describe extreme conditions occurring in the 

area and constitute the range of the 

phenomenon’ variability. The changes can 

be expressed in absolute numbers or in 

percentage; the latter is especially useful in 

comparative studies between the cities. 

5. RESULTS 

5.1. Reference 

The map of the summer days 

calculated using the measured climate data 

in Szeged has a characteristic spatial pattern 

(Fig. 4). In the city center, we find the 

highest values (about 100-110 days) in the 

time period 1981–2010. In the less dense 

 
Fig. 4  Mean annual number of summer days in 

Szeged in the period 1981–2010 using the 

measured data 

 
Fig. 5  Mean annual number of summer days in 

Szeged in the period 1971–2000 using the data 

of the climate models 
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landforms we found less number of summer 

days, in open midrise areas about 90–100 

days, open low-rise areas 70–80 days. In 

rural areas there was only 60–70 days. 

The time period 1971–2000 is the 

standard reference time for climate models. 

Fig. 5 shows the map for this period 

calculated using the climate data from 

climate models. It has almost similar spatial 

pattern to the one of 1981–2010. In the city 

center, there are the highest values (about 

90–100 days), in open midrise areas about 

80–90 days, in open low-rise areas 70–80 

days, and in rural areas only 60–70 days. 

In case of Vienna, the reference 

simulation shows a typical spatial 

distribution with the maximum heat load in 

densely built-up areas in the city center and 

in residential areas in the flat terrain north-

east of the river Danube (Fig. 6). Both 

orography and land use distribution 

influence the thermal characteristics. Due to 

the orography and prevailing winds from the 

northwest and southeast, the heat load in the 

residential areas located on the hill slopes in 

the west is lower than the heat load in the 

same type of built-up in the flat terrain 

located southward and eastward of the city 

center. The spatial pattern in the simulations 

for the periods 1971–2000 and 1981–2010, 

based on the measured data, is similar. 

However, the more recent climate period 

indicates a warming trend, which is found in 

observational time series. The simulation for 

the time period 1971–2000 based on climate 

model data is similar to the simulation based 

on the observational data for the same time 

period. The simulation based on the climate 

model data is further use as the reference for 

evaluation of future climate changes. 

Fig. 7 presents distribution of 

summer days in Brno as simulated with 

MUKLIMO model for recent climate. 

Spatial distribution of this variable reflects 

well the role of the main natural and 

anthropogenic factors that form urban 

climate. In case of Brno area, those are mainly altitude and land cover type. Under recent 

 

 

 
Fig. 6  Mean annual number of summer days in 

Vienna in the period 1971–2010 (top) and 

1981–2010 (center) using the measured data 

and 1971–2000 (bottom) using the data of the 

climate models 
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climate conditions, the number of summer days varies from 20–30 in northern and western 

parts in higher elevations to more than 100 in the city center. Spatial distribution of summer 

days within the Brno cadastral correlate well with density of buildings. The highest values 

are typical for the city center, but also for the Brno exhibition area (located south-east from 

the center) and also for relatively large areas of former factories (north-west of city center). 

Three maps on Fig. 7 for three successive 30-year long periods also well document gradual 

rising of air temperatures in this area. This increasing trend is statistically significant 

especially for summer months and on average it reaches 0.5°C / 10 years in the period 1961–

2010. 

 
Fig. 7  Mean annual number of summer days simulated using the data of the climate models in Brno 

for in three different reference periods (1961–1990, 1971–2000, 1981–2010) 

  
Fig. 8  Mean annual number of summer days in Bratislava in the period 1981–2010 using the 

measured data (left) and in the period 1971–2000 using the data of the climate models (right) 

In Bratislava, reference simulation also shows a considerable influence of terrain, as 

there is an evident connection between lower heat load and higher altitude, while there are 

also clearly defined most compact built-up urbanized areas. There is an obvious spatial 



Bokwa A, Dobrovolný P, Gál T, Geletič J, Gulyás Á, Hajto MJ, Holec J, Hollósi B, Kielar R, Lehnert M, 

Skarbit N, Šťastný P, Švec M, Unger J, Walawender JP, Žuvela-Aloise M 

20 

distribution of highest number of summer days with higher values in most compact urban 

areas in the center, as well as in residential districts to the south and industrial to the east. 

The spatial pattern also clearly shows the impact of the mountain range and forested areas in 

the north and west with the lowest observed values. The simulations for the periods 1971–

2000 and 1981–2010 (Fig. 8) share a similar spatial pattern, but there are slightly higher 

values in case of 1981–2010 period related to the warming in recent years and partly due to 

the different form of input (climate model vs. real station measurements). Difference between 

simulation of 1971–2000 based on climate model data and 1981–2010 based on real 

observation however is not overly significant. For both simulations the highest values are in 

the range of about 100–110 days, and the lowest at only 20–30 days. 

In Kraków, the data for the reference period 1971–2000 show that in the most densely 

urbanized areas, mean annual number of summer days was about 60 days (in 1981–2010: 

about 66) while e.g. in forested areas located within the city borders the number was below 

5 days (1981–2010: 5.6; Fig. 9). Large differences are also seen in rural areas between valleys 

and hilltops nearby; the values for the valleys were significantly larger. As suburban areas 

tend to develop intensively, relatively large values of the number of summer days can be also 

observed in areas surrounding the city, especially in small cities like Wieliczka or Skawina. 

The area of the Vistula river bottom is rather diversified in terms of the index discussed, as 

there are the most urbanized areas located, together with large areas of urban green and water 

areas. 

  
Fig. 9  Mean annual number of summer days in Kraków in the period 1971–2000 using the data of the 

climate models (left) and in the period 1981–2010 using the observations (right) 

5.2. Validation 

In Szeged, for the validation, we compared the data from the map of summer days, 

from the points located closest to the two meteorological stations in Szeged, with the data 

available from those stations. The data from the rural station is a mean value for 1981–2010, 

in urban station is a mean value for 1999–2010. In rural station the model resulted 54 summer 

days and based on the measurements there was 89 days. For the urban site the values are 

more similar, based on the measurements there is 94 days and the model gives 108 days. 

In case of Vienna, the model results for the time period 1981–2010 are compared to 7 

monitoring stations which have more than 10 years of measurements. The model results for 

the urban station Vienna Innere Stadt agree well with the observations. Mean annual number 

of summer days in the model is 79.4, while observed value is 72.3 summer days in average 
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for the period 1985–2010. At the rural 

station Groß Enzersdorf, an average of 65.7 

summer days is observed. The model results 

yield a value of 56.8 summer days, which 

underestimates the measured value by 14%. 

However, the comparison between stations 

in different environment shows variable 

model performance. The best agreement is 

found for the station Vienna Hohe Warte  

(-5%) located in residential areas in 

northwestern part of the city. In comparison 

with the station Groß Enzersdorf, the results 

for the airport station Schwechat 

representative for the rural environment as well, show a slight overestimation (68.5 summer 

days in the model compared to the 62.8 summer days in monitoring records). The reason for 

variable model performance could be the simplified land use distribution when using LCZ 

classification, which might not be representative for different micro-environments in Vienna. 

In case of Brno, direct validation of simulated number of summer days can be done 

only for Brno, Tuřany station (Fig. 10). This station is located at the Brno airport in south-

east part of the cadastral area and unfortunately, this station is neither typical urban nor 

typical rural station. From Fig. 10 it follows that model MUKLIMO 3D in general 

overestimates the number of summer days and this overestimation is about 50–60%. 

However, it must be stressed that this type of validation that is based on only one station may 

be biased or not well representative, because the found difference may be influenced due to 

many factors, e.g. proper classification of LCZ in this area. 

For the city of Bratislava, the model in selected rural location within the modeled 

region shows on average 56 summer days for 1981–2010 period, while according to the 

measurements at respective rural station the mean annual number of summer day was 69 

summer days. As for urban location (within the airport area) the model states that there was 

on average 72 summer days during year and according to the measurements at local station 

in 1981–2010 period the mean annual number of summer days was 54. In both rural and 

urban locations the mean annual number of summer days for 1981–2010 period presented by 

model, was therefore lower than values provided by station measurements. 

In case of Kraków, data from the two stations mentioned in table 3 (Balice airport, 

rural station and Botanical Garden, urban station) were used for comparison with the data 

generated with the model. The data presented in Table 7 show that the model shows lower 

values than measured, as already mentioned for other cities. However, the tendencies of 

changes are predicted correctly; the measurements show that the difference in the number of 

summer days between the urban and rural station decreased from 12.1 days (1971–2000) to 

10.2 days (1981–2010) and the modelled values are 15.3 and 14.3 days. 

Table 7  Mean annual number of summer days at the rural (Balice airport) and urban (Botanical 

Garden) stations in Kraków, according to measurements and modelled values 

Period 1971–2000 1981–2010 

Station measured modelled measured modelled 

Balice airport 38.1 28.6 46.2 31.3 

Botanical Garden 50.2 43.9 56.4 45.6 

  

 
Fig. 10  Mean numbers of summer days as 

measured (left) and simulated with the 

MUKLIMO 3D model (right) in Brno area for 

three different periods representing recent 

climate 
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5.3. Future scenarios 

In this section, the predictions of heat load changes in 2021–2050 and 2071–2100 are 

presented. First the data for each city is analyzed and then an attempt of comparative analysis 

of all the cities is undertaken. 

In Szeged, in the period 2021–2050, the number of summer days is supposed to 

increase compared to the present conditions. The spatial pattern is supposed to remain 

unchanged. The highest number of summer days is expected to be found in the city center. 

However, in case of RCP2.6 and RCP4.5, the number of summer days in the city centre is 

supposed to reach about 120 days, while in case of RCP8.5 it is 130 days (Fig. 11). 

  

  

  

Fig. 11  Mean annual number of summer days in 

Szeged in the period 2021–2050 using the model 

simulations for the RCP2.6 (top) RCP4.5 (center) 

and RCP8.5 (bottom) scenarios 

Fig. 12  Mean annual number of summer days in 

Szeged in the period 2071–2100 using the model 

simulations for the RCP2.6 (top) RCP4.5 (center) 

and RCP8.5 (bottom) scenarios 
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Fig. 13  Mean annual number of summer days 

in Vienna in the period 2021–2050 using the 

model simulations for the RCP2.6 (top) RCP4.5 

(center) and RCP8.5 (bottom) scenarios 

Fig. 14  Mean annual number of summer days 

in Vienna in the period 2071–2100 using the 

model simulations for the RCP2.6 (top) RCP4.5 

(center) and RCP8.5 (bottom) scenarios 
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Fig. 15  Mean annual number of summer days 

in Kraków in the period 2021–2050 using the 

model simulations for the RCP2.6 (top), 

RCP4.5 (center) and RCP8.5 (bottom) 

scenarios 

Fig. 16  Mean annual number of summer days 

in Kraków in the period 2071–2100 using the 

model simulations for the RCP2.6 (top), 

RCP4.5 (center) and RCP8.5 (bottom) 

scenarios 

For the end of the century (2071–2100) the number of summer days is significantly 

different in different RCPs. The spatial patterns are basically similar in each case, because 

the urban effects are similar, i.e. it is assumed in the present analysis that the land use/land 

cover remains unchanged. In the case of RCP2.6 (Fig. 12) there is no change compared to 

2021–2050 (Fig. 11). RCP4.5 represents a moderate change in the number of summer days, 
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the highest values are around 140 days. RCP8.5 is the worst scenario and the results differ 

significantly from the other scenarios and time periods, because the highest values are around 

160 days (Fig. 12) and even in the rural areas the numbers of summer days are higher than 

the numbers of summer days in the urban areas in the present climate conditions (Figs. 4, 5). 

  

  

  
Fig. 17  Mean annual number of summer days 

in Brno in the period 2021–2050 using the 

model simulations for the RCP2.6 (top), 

RCP4.5 (center) and RCP8.5 (bottom) 

scenarios 

Fig. 18  Mean annual number of summer days 

in Brno in the period 2071–2100 using the 

model simulations for the RCP2.6 (top), 

RCP4.5 (center) and RCP8.5 (bottom) 

scenarios 
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In case of Vienna, the model results for the time period 2021–2050 show moderate 

increase in the number of summer days compared to the reference simulation (Fig. 13). The 

intensity of warming and the spatial pattern do not vary much between different climate 

scenarios. For the end of the century (2071–2100) the increase in number of summer days is 

substantially different for each RCP scenario (Fig. 14). Minimal change is found for the RCP2.6 

compared to the 2021–2050 simulation. The RCP4.5 indicates an intermediate change, while 

the RCP8.5 scenarios shows extreme increase in the number of summer days. The highest 

values are around 120 days compared to about 70 days found in the reference simulation. 

In Kraków, for the period 2021–2050, all scenarios show a slight increase in the mean 

annual number of summer days; the mean value for the whole domain is expected to increase 

by about 10 days and reach the value of about 30 days (Fig. 15). In case of the period 2071–

2100 (Fig. 16), the uncertainty of predictions increases, and mean values vary depending on 

the scenario chosen from 30 to 65 days. For both periods considered, the spatial pattern shows 

the impact of both land use/land cover and relief on the thermal conditions. The highest 

numbers of summer days can be found in densely built-up areas, located in the valley floor, 

and in urban areas located close to Kraków borders. The lowest values are observed for 

forested areas. Additionally, in rural areas surrounding Kraków, larger numbers of summer 

days can be found in the valleys than at the hilltops nearby. Green urban areas located 

between strongly urbanized parts of the city show smaller number of summer days than built-

up areas. 

In case of Brno, the model results for the middle of this century (2021–2050) show 

about 40% increase in the number of summer days compared to the reference simulation for 

RCP4.5, RCP8.5 scenarios (Fig. 17). Distinctly higher number of summer days show RCP2.6 

scenario (increase about 60% compared to recent climate). This difference, however, is 

related to the fact that lower number of regional model outputs was used for RCP2.6 scenario. 

Simulated numbers of summer days are compared to the reference Brno, Tuřany station. Thus 

there is and an increase from about 37 days (1971–2000) to 52 days (2021–2050) in case of 

scenarios RCP4.5 and RCP8.5 and 57 days (2021–2050) in case of RCP2.6. Quite different 

results as for individual scenarios were found for the Brno climate simulations of the end of 

the 21 century (2071–2100) – see Fig. 18. While RCP2.6 scenario predicts on average 52 

summer days in Brno area, RCP4.5 scenario predicts slightly higher – 59 summer days (that 

is 60% increase compared to the present). Significantly higher number of summer days can 

be seen for the RCP8.5 scenario; 81 summer days represents 120% of the present value. 

In case of Bratislava, there is a moderate increase in the number of summer days in the 

study area for the time period 2021–2050 compared to the reference simulation (Fig. 19). The 

scenarios show that mean number of days for the whole region would increase by around 20 days. 

The maximum number of summer days in 2021–2050 period for the worst RCP8.5 scenario could 

be 130 days, which is about 26 more summer days annually compared to the reference simulation 

of 1971–2000. In the later 2071–2100 period the average and maximum number of summer days 

within the modeled region as well as their spatial distribution have greater variance depending on 

the input scenario (Fig. 20). Mean values in this period calculated for the whole region vary 

depending on the scenario from 78 to 119 days. The model yields a maximum value of 148 

summer days for RCP8.5 scenario compared to about 100 days found in the reference simulation. 
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Fig. 19  Mean annual number of summer days 

in Bratislava in the period 2021–2050 using the 

model simulations for the RCP2.6 (top), 

RCP4.5 (center) and RCP8.5 (bottom) 

scenarios 

Fig. 20  Mean annual number of summer days 

in Bratislava in the period 2071–2100 using the 

model simulations for the RCP2.6 (top), 

RCP4.5 (center) and RCP8.5 (bottom) 

scenarios 
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5.4.Changes of heat load in land use types 

In order to analyze the heat load 

change in connection with land use/land 

cover, the following procedure was used. 

One or a few points were found for each 

LCZ in each city.  

Those were the points in the centers 

of the largest homogenous LCZ areas of the 

city. For those points, maximum, minimum 

and mean values of mean annual number of 

summer days were compared, using data 

from the EURO-CORDEX climate models 

(see section 4.3) downscaled with cuboid 

method (see section 4.1). The procedure 

allows to compare the absolute or relative 

(% change) values of the cities for different 

30-year periods. The procedure is shown 

using the example of Szeged and Brno. 

In Szeged, the intra urban difference 

is significant in the present climate 

conditions, LCZ9 (sparsely built) and LCZ6 

(open low-rise) have less summer days. 

LCZ2 (compact mid-rise) has two times 

more summer days than LCZ9 (Fig. 21). 

The intra urban differences remain 

the same in the period 2021–2050 (Fig. 22) 

or 2071–2100 (Fig. 23). In the period 2021–

2050, the minimum predicted number of 

summer days occur in LCZ9 and the 

maximum in LCZ2. Difference between 

models is almost the same as the difference 

between LCZs except LCZ9. In period 

2071–2100 the thresholds of the different 

models are increasing. 

Relative values were calculated for 

the minimum, maximum and mean of model 

results for particular LCZ type. In case of 

RCP2.6, 4.5 and 8.5 the reference value was 

the model mean for 1971–2000. The results 

show that the highest increase is predicted in 

LCZ9 or LCZ6 (Figs. 24, 25). Those are the 

areas with less dense built-up than the city 

centre, so the increase in built-up area share 

in those parts of the city can cause serious 

hazards for the inhabitants, due to the 

increase of the heat load. The differences in 

 
Fig. 21  Maximum, mean and minimum of mean 

annual number of summer days in Szeged in the 

period 1971–2000 using the applied climate 

models in different LCZ classes 

 
Fig. 22  Maximum, mean of the different RCPs 

and minimum of mean annual number of summer 

days in the period 2021–2050 using the applied 

climate models in different LCZ classes in Szeged 

 
Fig. 23  Maximum, mean of the different RCPs 

and minimum of mean annual number of summer 

days in the period 2071–2100 using the applied 

climate models in different LCZ classes in Szeged 
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relative change (Figs. 24, 25) are not enough to distinguish the differences in the number of 

the summer days between LCZs (Figs. 22, 23). 

Similar analysis was performed for Brno and the results are shown in Figs. 26–30. In 

1971–2000, the highest mean values were observed for LCZ2 (compact mid-rise) and LCZ 

8 (large low-rise). The highest increase is predicted in LCZ9, like in the case of Szeged. 

  
Fig. 24  Change of maximum, mean of the 

different RCPs and minimum of mean annual 

number of summer days in the period 2021–2050 

using the applied climate models in different LCZ 

classes compared to 1971–2000 (min., mean and 

max., respectively) in Szeged 

Fig. 25  Change of maximum, mean of the diffrent 

RCPs and minmum of mean annual number of 

summer days in the period 2071–2100 using the 

applied climate models in different LCZ classes 

compared to 1971–2000 (min., mean and max., 

respectively) in Szeged 

 
 

Fig. 26  Maximum, mean and minmum of mean 

annual number of summer days in Brno in the 

period 1971–2000 using the applied climate 

models in different LCZ classes 

Fig. 27  Maximum, mean of the different RCPs 

and minimum of mean annual number of summer 

days in the period 2021–2050 using the applied 

climate models in different LCZ classes in Brno 
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Fig. 28  Maximum, mean of the different RCPs 

and minimum of mean annual number of summer 

days in the period 2071–2100 using the applied 

climate models in different LCZ classes in Brno 

Fig. 29  Change of maximum, mean of the 

different RCPs and minimum of mean annual 

number of summer days in the period 2021–2050 

using the applied climate models in different LCZ 

classes compared to 1971–2000 (min., mean and 

max., respectively) in Brno 

6. DISCUSSION 

The results obtained for particular 

cities can be compared in order to formulate 

the features characteristic for the cities in the 

whole region of Central Europe. The 

predictions for the period 2021–2050 show 

a rather slight increase in the mean annual 

number of summer days, while for the 

period 2071–2100, the predicted values are 

much larger. The scenario RCP2.6 is the 

most optimistic one in terms of future CO2 

concentration and impact, but unfortunately 

the chances that it will be realized are rather 

modest. Therefore, the predictions for the 

period 2071–2100, for the scenarios RCP4.5 

and RCP8.5 were analyzed further. Tables 8, 

9 and 10 present the characteristic values for each city and scenario, in relation to the 

reference period 1971–2000. The values in Table 8 refer to the results shown in Figs. 11-20. 

Table 8 shows large differences among the cities in the mean number of summer days 

in the reference period 1971–2000 (mean values for the whole domains). Cities located in the 

southern part of Central Europe (represented by Szeged) have on average twice as much 

summer days than cities located north of the Carpathian Mts. (represented by Kraków). It is 

a result of climatic variability of Central Europe, linked to the transitional character of all 

elements of the natural environment. The Carpathian Mts. constitute a significant climatic 

barrier. South of that mountain chain, the impact of the Mediterranean Sea is one of the 

factors controlling climatic conditions while north of the Carpathians, polar air masses 
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Fig. 30  Change of maximum, mean of the 

different RCPs and minimum of mean annual 

number of summer days in the period 2071–2100 

using the applied climate models in different LCZ 

classes compared to 1971–2000 (min., mean and 

max., respectively) in Brno 
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(maritime from the west and continental from the east) decide about large weather variability 

and more severe climatic conditions. 

Table 8  Mean annual number of summer days, 1971–2000 and 2071–2100 (RCP4.5 and RCP8.5) 

  Mean   Min   Max  

City 1971– 2071–2100 1971– 2071–2100 1971– 2071–2100 

 2000 RCP4.5 RCP8.5 2000 RCP4.5 RCP8.5 2000 RCP4.5 RCP8.5 

Kraków 20.3 37.8 59.2 4.0 14.8 28.7 61.1 78.6 100.3 
Brno 37.2 59.3 81.4 10.5 27.4 40.7 83.4 102.1 123.1 
Vienna 45.4 70.0 93.4 7.2 21.3 40.0 82.8 107.8 128.8 
Bratislava 56.4 85.9 107.8 20.6 42.4 65.0 104.1 131.2 148.9 
Szeged 50.1 79.1 104.3 7.8 24.3 78.5 123.4 142.8 159.1 

Explanations: mean – mean value for the whole domain of a certain city (see Fig. 1), min – the lowest value 

found in a domain, max – the highest value found in the domain 

 

Additionally, data from Table 8 show that the difference in mean annual number of 

days (mean values for the whole domain) between Szeged and Kraków might increase in the 

future: for 1971–2000 it was about 30 days, while for 2071–2100 it is predicted to increase 

up to about 41–45 days, depending on the scenario. Minimum and maximum values shown 

in table 8 are much more dependent on local land use/land cover variability than on general 

climatic conditions; those values represent areas in each city where extremely low or high 

values can occur. But those values also show the range of the values that can be experienced 

in each city. For the reference period, the largest difference was noted for Szeged (about 166 

days) while the smallest for Kraków (57 days). In all cities, maximum and minimum values 

are predicted to increase, but the changes in the range of the values (i.e. the difference 

between the maximum and minimum value) shows no uniform tendency. In Kraków, Brno 

and Vienna the range is predicted to increase in comparison to 1971–2000 (by 2–15 days, 

depending on the scenario used), in Bratislava it is predicted to be almost unchanged, and in 

Szeged – it might decrease even by 35 days. The decrease for Szeged might constitute a 

particular hazard for the inhabitants. 

Tables 9 and 10 show the absolute and relative changes of the values shown in Table 

8. Relative values (in %) in table 10 show a larger increase in mean values for the whole 

domain in the north of the region (Kraków and Brno: 192 and 119% for RCP8.5) than in the 

south (Szeged: 108% for RCP8.5). An interesting feature is the difference in most values 

between Vienna and Bratislava, as they are located so close to each other. On one hand, 

Bratislava is a much smaller city than Vienna, so the impact of built-up area on urban climate 

is smaller, too. On the other hand, each city is located in different environmental conditions, 

including relief, which is a significant element controlling urban climate. From all the cities 

considered, Szeged is the only one located in a flat area and it is also the smallest city 

comparing to the others. Even though the absolute number of summer days (mean for the 

whole domain) is predicted to be the highest there in 2071–2100, the relative increase is 

comparable to Vienna or Brno, while for Kraków the values of relative increase are the 

highest. The indices discussed above allow to see the regional dimension of the predicted 

heat load increase. The local dimension can be discussed for each city in terms e.g. of the 

spatial planning. As mentioned in the introduction section, all cities studied except Szeged 

are located in a complicated relief conditions. The figures presented in section 3 show that 

concave land forms (e.g. valley bottoms) experience larger numbers of summer days than 

nearby hilltops. It is a phenomenon well known from the studies on the climate of the 

mountains. Even though the cities considered are not located in the mountains, the differences 



Bokwa A, Dobrovolný P, Gál T, Geletič J, Gulyás Á, Hajto MJ, Holec J, Hollósi B, Kielar R, Lehnert M, 

Skarbit N, Šťastný P, Švec M, Unger J, Walawender JP, Žuvela-Aloise M 

32 

in relative altitude are large enough to contribute to the generation of the processes known 

from mountainous areas (e.g. katabatic flows, air temperature inversions). However, those 

processes can be observed mainly during the night time, while the present study concerns the 

daytime and the occurrence of the maximum temperature ≥ 25C. During the day time, there 

are no such large differences in air temperature between valleys and hilltops as during the 

night but valley floors tend to have higher maximum air temperature and that is also visible 

in the data presented above. 

Table 9  Increase (in number of days) of mean annual number of summer days in the periods1971–

2000 and 2071–2100 (RCP4.5 and RCP8.5) 

  Mean   Min   Max  

City 1971– 2071–2100 1971– 2071–2100 1971– 2071–2100 

 2000 RCP4.5 RCP8.5 2000 RCP4.5 RCP8.5 2000 RCP4.5 RCP8.5 

Kraków 20.3 17.5 38.9 4.0 10.8 24.7 61.1 17.5 39.2 
Brno 37.2 22.1 44.2 10.5 16.9 30.2 83.4 18.7 39.7 
Vienna 45.4 24.6 48.0 7.2 14.1 32.8 82.8 25 46 
Bratislava 56.4 29.5 51.4 20.6 21.8 44.4 104.1 27.1 44.8 
Szeged 50.1 29.0 54.2 7.8 16.5 70.7 123.4 19.4 35.7 

Explanations: mean – mean value for the whole domain of a certain city (see Fig. 1), min – the lowest value 

found in a domain, max – the highest value found in the domain 

Table 10  Increase (in %) of mean annual number of summer days, in the periods 1971–2000 and 

2071–2100 (RCP4.5 and RCP8.5) 

  Mean   Min   Max  

City 1971– 2071–2100 1971– 2071–2100 1971– 2071–2100 

 2000 RCP4.5 RCP8.5 2000 RCP4.5 RCP8.5 2000 RCP4.5 RCP8.5 

Kraków 20.3 86 192 4.0 270 618 61.1 29 64 
Brno 37.2 59 119 10.5 161 288 83.4 22 48 
Vienna 45.4 54 106 7.2 196 456 82.8 30 56 
Bratislava 56.4 52 91 20.6 106 215 104.1 26 43 
Szeged 50.1 58 108 7.8 212 906 123.4 16 29 

Explanations: mean – mean value for the whole domain of a certain city (see Fig. 1), min – the lowest value 
found in a domain, max – the highest value found in the domain 

7. CONCLUSIONS 

According to the predictions presented, an increase in heat load, expressed in mean 

annual number of summer days, is expected in urban areas of Central Europe. Mean values 

for particular study areas are expected to increase by 2100, comparing to 1971–2000, by 20–

50 days, depending on the scenario used. The regional spatial pattern of the predicted values 

of mean annual number of summer days shows dependence on latitude, i.e. for cities located 

in the northern part of the study area, the values are lower than for cities located in the south. 

The difference for mean values, for particular study areas, reaches about 40 days. The local 

spatial pattern shows the impact of both land use/land cover and relief. The largest values of 

mean annual number of summer days are observed in areas with intense built-up which are 

located in the valley floors. In rural areas, larger values are observed in the valleys than in 

the hill tops. The differences between the places with the lowest value and the largest value 

in particular cities reach 60–100 days, depending on the scenario used. 
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The results obtained might be useful e.g. in spatial planning in particular cities, but 

they should be also used for a long-term education of local communities. The predicted 

changes call for preparedness and planning of the mitigation actions. Those are actions which 

cannot be realized without a relatively high level of public awareness of the issue discussed. 

First of all, the density of existing built-up structures should not be increased as it might 

generate in the future the intensification of the heat load. New buildings should be located in 

areas located well above the river valley floor, so as to avoid the enhancement of heat load 

increase by overlapping effect of both relief and land use. Additionally, each city should 

elaborate a “strategy of shading”, e.g. by increasing the number of trees. Urban green areas 

may contribute to the decrease of heat load only when they are arranged in such a way as to 

increase the city albedo, i.e. reflect the solar radiation and do not allow it to be absorbed by 

the urban structures.  

The area of Central Europe is very diversified in terms of the natural environment 

conditions. Effects of factors of regional importance are modified significantly by the impact 

of various local conditions. The results presented above for the five cities of Central Europe 

show, on one hand, the high diversity of the region, but on the other hand, they present a 

tendency common for the whole area of Central Europe, namely the predicted increase in the 

heat load in urban areas. Those results are in accordance with results available for the whole 

continent. Therefore, further research on potential consequences of that phenomenon is 

needed, together with the transfer of this scientific knowledge to the decision makers, 

responsible for spatial planning and citizens’ health and well-being. 
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